Basic Fibroblast Growth Factor Contributes to a Shift in the Angioregulatory Activity of Retinal Glial (Müller) Cells

نویسندگان

  • Yousef Yafai
  • Ianors Iandiev
  • Johannes Lange
  • Xiu Mei Yang
  • Peter Wiedemann
  • Andreas Bringmann
  • Wolfram Eichler
چکیده

Basic fibroblast growth factor (bFGF) is a pleiotropic cytokine with pro-angiogenic and neurotrophic effects. The angioregulatory role of this molecule may become especially significant in retinal neovascularization, which is a hallmark of a number of ischemic eye diseases. This study was undertaken to reveal expression characteristics of bFGF, produced by retinal glial (Müller) cells, and to determine conditions under which glial bFGF may stimulate the proliferation of retinal microvascular endothelial cells. Immunofluorescence labeling detected bFGF in Müller cells of the rat retina and in acutely isolated Müller cells with bFGF levels, which increased after ischemia-reperfusion in postischemic retinas. In patients with proliferative diabetic retinopathy or myopia, the immunoreactivity of bFGF co-localized to glial fibrillary acidic protein (GFAP)-positive cells in surgically excised retinal tissues. RT-PCR and ELISA analyses indicated that cultured Müller cells produce bFGF, which is elevated under hypoxia or oxidative stress, as well as under stimulation with various growth factors and cytokines, including pro-inflammatory factors. When retinal endothelial cells were cultured in the presence of media from hypoxia (0.2%)-conditioned Müller cells, a distinct picture of endothelial cell proliferation emerged. Media from 24-h cultured Müller cells inhibited proliferation, whereas 72-h conditioned media elicited a stimulatory effect. BFGF-neutralizing antibodies suppressed the enhanced endothelial cell proliferation to a similar extent as anti-VEGF antibodies. Furthermore, phosphorylation of extracellular signal-regulated kinases (ERK-1/-2) in retinal endothelial cells was increased when the cells were cultured in 72-h conditioned media, while neutralizing bFGF attenuated the activation of this signaling pathway. These data provide evidence that retinal (glial) Müller cells are major sources of bFGF in the ischemic retina. Müller cells under physiological conditions or transient hypoxia seem to provide an anti-angiogenic environment, but long-lasting hypoxia causes the release of bFGF, which might significantly co-stimulate neovascularization in the retina.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Modification of Glial–Neuronal Cell Interactions Prevents Photoreceptor Apoptosis during Light-Induced Retinal Degeneration

Prolonged or high-intensity exposure to visible light leads to photoreceptor cell death. In this study, we demonstrate a novel pathway of light-induced photoreceptor apoptosis involving the low-affinity neurotrophin receptor p75 (p75NTR). Retinal degeneration upregulated both p75NTR and the high-affinity neurotrophin receptor TrkC in different parts of Müller glial cells. Exogenous neurotrophin...

متن کامل

Vascular endothelial growth factor is present in glial cells of the retina and optic nerve of human subjects with nonproliferative diabetic retinopathy.

PURPOSE To determine whether vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (bFGF), which have been implicated in the development of retinal and choroidal neovascularization, are present in the retinas and optic nerves of patients with diabetes before proliferative retinopathy appears. METHODS Light microscopic immunocytochemistry using antibodies to VEGF, bFGF, ...

متن کامل

Microglia-Müller glia cell interactions control neurotrophic factor production during light-induced retinal degeneration.

Activation of microglia commonly occurs in response to a wide variety of pathological stimuli including trauma, axotomy, ischemia, and degeneration in the CNS. In the retina, prolonged or high-intensity exposure to visible light leads to photoreceptor cell apoptosis. In such a light-reared retina, we found that activated microglia invade the degenerating photoreceptor layer and alter expression...

متن کامل

A New Two Step Induction Protocol for Neural Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells

Background: In this study, we examined a new two step induction protocol for improving the differentiation of human umbilical cord blood-derived mesenchymal stem cells into neural progenitor cells. Materials and Methods: Human umbilical cord blood-derived mesenchymal stem cells were first cultured in Dulbecco’s modified eagle medium supplemented with 10% fetal bovine serum in a humidified incu...

متن کامل

A calcium-activated, calcium-permeable ion channel in human retinal glial cells: modulation by basic fibroblast growth factor.

A calcium-permeable, voltage-insensitive non-specific cation channel that is activated by cytoplasmic calcium was found in approximately 50% of the cell-attached patches in cultured human retinal glial cells sampled by the patch clamp technique. Spontaneous openings of this channel were infrequent, but increased markedly when glial cells were exposed to basic fibroblast growth factor. Although ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013